Wednesday, 10 August 2016

D4R Project Management

 Management of a Design for Reliability project should be the same of any engineering project, it should include a target, a scope, time and resources, both human and financials.


 Using agile project management methodologies, as Scrum methodology. is a good recommendation to manage this type of projects.

 Scrum allows an effective management of complex and high risk projects, ensuring results; in order to do it Scrum splits the project in short milestones, or Sprint, to work in parts of the project large enough to be considered a deliverable. 

 A Design for Reliability project could include the following parts:

a.  Definition of the level of reliability required by the customer, to set the reliability program goals. The product user is who should define the level of reliability, if the level is too high the cost is also too high and customer doesn't appreciate it; if the level is too low we will have claims and lost of trust, so we damage our brand. 

We can know our customer opinnion by surveys and by studying claims and warranties.   

b.   Product reliability assessment, in working conditions and for estimated operation time. The easiest way is to perform a qualitative analysis by Failure Modes and Effects Analysis (FMEA), it allows us define the failure modes, their causes, how to prevent / detect them, and their effects for users, and assess them by a Risk Priority Number (RPN). This methodology allows us to define a ranking of level of reliability of the product. 

c. Reliability modelling, showing the weakness of product and improvement opportunities. The modelling could be done by Reliability Block Diagram (RBD) and Fault Tree Analysis (FTA), these methodologies provide quantitative results and allow us to identify weakness of design and try new elements and settings.  

d.    The reliability functions estimation, they allow to perform a quantitative reliability analysis. When we have prototypes or real products working we could analyse real failure data and define the reliability function, failure function, probability density function (pdf) and failure rate function; with this functions is possible to calculate life data, warranties, etc. 

There are several probability distribution that allow to define these functions, Weibull distribution is the most common, it requires to calculate three parameters: shape parameter, scale parameter, and location parameter, that usually has a value of 0 in this type of analysis.



e.  Performing accelerated life tests, as Highly Accelerated Life Test (HALT) and Highly Accelerated Stress Screening (HASS), to confirm data and study possibilities of improvement. Testing prototypes in real conditions is too slowly and expensive, an alternative is to design an accelerate testing, increasing the stresses to induce a failure, most common factors are temperature, vibrations, electric parameters, humidity,... then testing the prototype to failure, and use power relations (as Inverse Power Law Relationship), exponential relations (as Arrhenius relationship or Eyring relationship) or mixed relations (as Temperature - Non Thermal relationship) to estimate the life of product under working conditions.

This methodology allows to modify the design and test the result in a faster and cheaper way, but require a right failure modes identification process to ensure the results are reliable. 

f.  Performing a reliability growth program, to reach the reliability target based in customer requirements. The Reliability Growth program should include the components discussed inside this post, development of test could be modelling by Duane model, Crow-AMSAA model, Lloyd-Lipow model, Gompertz model or Logistic model.

Thursday, 21 July 2016

Gestión de un Proyecto de Fiabilidad

 Un proyecto de diseño para la fiabilidad se debe plantear como cualquier proyecto de ingeniería, por lo tanto se deben definir unos objetivos, un alcance, unos plazos y unos recursos tanto humanos como financieros.

 Una recomendación para gestionar este tipo de proyectos es utilizar metodologías ágiles, como por ejemplo la metodología Scrum.

Esta metodología permite gestionar con efectividad proyectos complejos y con alto riesgo, asegurando los resultados; para ello se divide el proyecto en tramos cortos, denominadas Sprint, en los que se trabaja con partes del proyecto que son los suficientemente completos como para ser considerado un entregable. 

 El proyecto de diseño para la fiabilidad se puede componer de los siguientes apartados:

a. Definición del nivel de fiabilidad requerido por el cliente, que sirve para fijar objetivos del plan de fiabilidad. Es el usuario del producto el que tiene que definir el nivel de fiabilidad, si se proporciona un nivel demasiado elevado el coste del producto será muy elevado y el cliente no lo valorará, si el nivel es demasiado bajo tendremos reclamaciones y perderemos la confianza de nuestros clientes dañando la imagen de nuestra marca. 

Se puede conocer la opinión del cliente mediante encuestas y mediante el análisis de las garantías reclamadas por ellos.   

b.   Evaluación de la fiabilidad del producto, en las condiciones normales de utilización y durante el  tiempo estimado de utilización. La forma más sencilla es realizar un análisis cualitativo utilizando un Análisis de Modos de Fallos y Efectos (FMEA), que nos permite definir modos de fallos, sus causas, la forma de prevenirlos o detectarlos y sus efectos para el usuario, y darles unas valoraciones mediante el Número de Prioridad de Riesgo (RPN). Esta metodología nos permite clasificar el nivel de fiabilidad del producto. 

c. Modelización de la fiabilidad del producto, descubriendo sus puntos más débiles y las oportunidades de mejora. Esta modelización se puede realizar mediante Diagramas de Bloques de Fiabilidad (RBD) y Análisis de Árbol de Fallos (FTA), estas metodologías nos proporcionan resultados cuantitativos, nos permite identificar los puntos más débiles del diseño y nos permite comparar nuevos componentes y configuraciones.  

d.    Estimación de las funciones de fiabilidad, que permite analizarla de forma cuantitativa. Una vez que tenemos prototipos o productos en funcionamiento se pueden analizar datos reales de fallos y definir las funciones fiabilidad, fallo, densidad de probabilidad de fallos y tasa de fallos; con lo que se calculan datos de vida, periodos de garantía, etc. 

Existen varias distribuciones estadísticas que permiten definir estas funciones, la más habitual es la distribución de Weibull, que requiere el cálculo de tres parámetros: parámetro de forma, parámetro de escala y parámetro de localización, que en estos estudios es habitualmente cero.



e.  Realización de ensayos de vida acelerada, como son los Ensayos de Vida Altamente Acelerada (HALT) y Monitorización de Esfuerzos Altamente Acelerada (HASS), que permitan confirmar datos y explorar posibles mejoras. Comprobar prototipos en condiciones reales de funcionamiento es muy lento y costoso, como alternativa se diseñan ensayos de vida acelerada, en la que se exageran algunos esfuerzos que provoquen fallos, normalmente temperatura, vibraciones, parámetros eléctricos, humedad,... y se ensaya el producto hasta el fallo en esas condiciones; posteriormente se utilizan relaciones potenciales (como Ley Potencial Inversa), exponenciales (como Arrhenius o Eyring) o mixtas (como Relación Temperatura - No Termal) para estimar la duración de ese mismo producto en condiciones normales.

Esta metodología permite modificar y probar el producto de forma rápida, pero requiere tener perfectamente identificados los modos de fallo, en caso contrario los resultados no serán creibles. 

f.  Realización de un plan de mejora de fiabilidad, hasta alcanzar los objetivos basados en los requerimientos del cliente. El plan debe tener los elementos analizados anteriormente, el desarrollo de ensayos se puede modelizar con modelos como el Duane, Crow-AMSAA, Lloyd-Lipow, Gompertz o Logístico.

Thursday, 16 June 2016

10AS JORNADAS SOBRE EL MANTENIMIENTO EN LA INDUSTRIA QUIMICA Y DE PROCESO


Este mes participaré con una ponencia sobre Gestión de Activos ISO 55000 en las 10ª Jornadas de Industria Química y Proceso que celebra la AEM en Tarragona, área clave y puntera en el sector petroquímico dentro del mapa industrial español.

En el enlace encontrarán más información e instrucciones para la inscripción.






Thursday, 26 May 2016

I Congreso Internacional de Ingeniería del Mantenimiento en Canarias (14 - 15 Junio)

 Los próximos días 14 y 15 de junio de 2016, TBN-Ingeniería de Mantenimiento Industrial y Servicios Integrales de Lubricación, S.L. organiza en el Palacio de Congresos Gran Canaria (INFECAR) el I CONGRESO INTERNACIONAL DE INGENIERÍA DEL MANTENIMIENTO EN CANARIAS, que será el punto de encuentro para las industrias, empresas, instituciones públicas y privadas, asociaciones de carácter nacional, regional e insular relacionadas con el mantenimiento, alumnos de ingeniería y de las escuelas de formación profesional, así como toda persona vinculada o interesada en el MANTENIMIENTO.
 Pueden visitar la página web del Congreso www.congresomantenimientocanarias.com donde podrán obtener toda la información relacionada con este evento. Es un Congreso GRATUITO, pero es importante cumplimentar la Inscripción a efectos de la adecuada organización del mismo.
 Asimismo, señalar que esta página web seguirá activa a lo largo del tiempo porque iremos dando toda la información de los cursos post congreso que se vayan ofertando, así como de los exámenes de certificación que se programen. Asimismo, estará disponible toda la actualidad relacionada con la Feria dedicada al Mantenimiento que vamos a organizar para el 2017.
 Aprovechamos la ocasión para comunicar que ya está disponible en la página de TBN- Ingeniería de Mantenimiento Industrial (www.tbn.es) el 9º Número de la REVISTA INGENIERÍA DEL MANTENIMIENTO EN CANARIAS, donde podrán visualizar todos los artículos incluidos en esta nueva edición. Esperamos que la información contenida en este nuevo número sea de su máximo interés. De igual manera, en esta web podrá encontrar todos los números anteriores de esta publicación.


Saturday, 14 May 2016

Formulation of Lubricants: Additives

Base fluids generally cannot satisfy the requirements of high performance lubricants, they need additives, that are chemical compounds added to lubricating oils to improve certain of its properties to the finished oils. Usually, the amount  of additive used varies from 5 to 20%.


In addition to their beneficial effects, additives can have detrimental side effects, especially if the dosage is excessive or if interactions with other additives or with surfaces, seals and paints occur. So additives should be carefully balanced.


.Additives can be classified in three groups:

1. Lubricant Performance Enhancement Additives. Their mission is to improve base oil properties, allowing lubricant to work at extreme conditions.

a. Viscosity index (VI) improvers, long chain, high molecular weight polymers, as polymethacrylates (PMAs), poly-ethylene propylenes (OCPs), poly-styrenes-co-butadienes hydrogenated (HSDs), poly-isopropenes hydrogenated (SIPs), poly-styrenes-co-maleic-anhydride esterificated (SPE), to thicken the lubricant at elevated temperatures.

b. Pour point depressants, certain high molecular weight polymers function by inhibiting the formation of a wax crystal structure that would prevent oil flow at low temperatures, usually alkylaromatic polymers and polymethacrylates are used. A lowering of the pour point by about 11º - 17º C can be achieved.

c. Seal swell agents, promote slight swelling of seal material to counteract shrinking action of some highly paraffinic and PAO base oils. They are mainly formulated by esters.

d. Tackiness agents, are used to increase adhesiveness of lubricants on metal surfaces reducing run-off. They are formulated by high molecular weight polymers, aluminium soaps of unsaturated fatty acids.

e. Emulsifiers and demulsifiers, have the mission to emulsify water to avoid phases separation, and demulsify to separate water contamination from the lubrication system. Special polyethylene glycols and other ethoxylated substances have proved high efficiency.

2. Lubricant Protection Additives. Their mission is to protect the base oil, increasing the lubricant life.

  a. Anti-oxidants, when oil is heated in the presence of air oxidation occurs, as a result of it both the oil viscosity and the concentration of organic acids in the oil increase, and varnish and lacquer deposits may form on hot metal surfaces exposed to the oil. 

Oxidation inhibitors based in Zinc Dithiophosphate (ZDTPs), phenols compounds, diphenylamine alkylate, molybdenum and dithiocarbamate organic compounds, even sulphur and nitrogen compounds can be used; they react with the initiators, peroxy radicals, and hydroperoxides to form inactive compounds, or decompose these materials to form less reactive compounds, so they increase the live of lubricants.

  b. Metal passivators, build a passivating protective layers thus preventing the solubilization of metal ions that would work as pro-oxidants. Can be classified into three groups: film forming compounds, complex forming chelating agents and sulfur scavengers. The mostly used are benzotriazole and tolytriazole as well as their alkylated derivatives.

  c. Foam inhibitors, ability of oils to resist foaming varies considerably on type of crude oil, type and degree of refining, and viscosity, additives are formed by long chain polymers or silicones which act to destabilise surface foam.

  d. Dispersants, are chemical compounds that disperse or suspend in the oil potential sludge forming materials, joined with Detergents can delay the formation of deposits and reduce the rate at which they accumulate on metal surfaces. 

Typical dispersants are based on long chain hydrocarbons as polymeric succimides, olefin/P2S5 reaction products, polyesters, and benzylamides, that are acidified and then neutralized with compound containing basic nitrogen.


3. Metal Surface Protection Additives. Their mission is to provide active protection to metal surfaces, increasing life of equipment.

a. Anti-wear (AW), reduce friction and wear under boundary lubrication conditions; these additives form layers on the metal surface by absorption or chemisorption. They are formed by phosphorus compounds, sulfur and phosphorus compounds, sulfur and nitrogen compounds, sulfur compounds, and chlorine compounds.

b. Extreme pressure (EP), reduce friction and prevent scuffing and scoring of components operating under boundary lubrication conditions. They react with the metal surfaces producing a thin protective film in the same way of AW additives. they are formed with the same type of compounds of AW, but are much more reactive, but also passive EPs as sulfonated, especially calcium and sodium salts, and solid lubricating compounds as molybdenum disulfide. Typically EP aditives increase wear effects due their high reactivity.

c. Corrosion and rust inhibitors, there are two types of corrosion, by organic acids that develop in the oil itself, and by contaminants that are picked up and carried by the oil. Inhibitors form a protective film that prevents the corrosive materials from reaching or attacking the metal. Highly alkaline materials, as benzotriazole, substituted azoles, sulphured olefines, zinc diethyldithiophosphate, zinc diethyldithiocarbamate, trialkyl phosphites, in the oil will help to neutralize strong acids as they are formed.  

Rust inhibitors having a high polar attraction toward metal surfaces, typical materials used are amine succinates and alkaline earth sulfonates.

d. Detergents, prevent the build-up of deposits in hot running engines, joined with Dispersants. They are generally to be compound that chemically neutralize deposit precursors that form under high temperature conditions or as the result of burning fuels with high sulfur content or other materials that form acidic combustion by-products. 


   The main detergents are organic soaps and salts of alkaline earth metals such as barium, calcium, and magnesium. these materials are often referred to as metallo-organic compounds.

4. Other Additives. We can include other additives as Anti-microbial pesticide to protect lubricants from contamination, fouling or deterioration caused by bacteria, fungi, protozoa, algae, or slime; or Dyes to give a specific color type for marketing, identification or leak detection; they have no influence in lubricant performance.